Wave equation with second–order non–standard dynamical boundary conditions
نویسنده
چکیده
The paper deals with the well–posedness of the problem 8 >< >: utt −∆u = 0 in R× Ω, utt = kuν on R× Γ, u(0, x) = u0(x), ut(0, x) = v0(x) in Ω, where u = u(t, x), t ∈ R, x ∈ Ω, ∆ = ∆x denotes the Laplacian operator respect to the space variable, Ω is a bounded regular (C∞) open domain of RN (N ≥ 1), Γ = ∂Ω, ν is the outward normal to Ω, k is a constant. We prove that it is ill–posed if N ≥ 2, while it is well–posed when N = 1. In the one dimensional case we give a complete existence, uniqueness and regularity theory. We also give some existence result for regular initial data when N ≥ 2 and Ω is a ball.
منابع مشابه
The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملEigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملDetecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کامل